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1. Introduction

It is known that a two dimensional flow of inviscid fluid is

unstable with respect to small disturbances if the velocity profile has

an inflexion point in it. Rayleigh in 1880, [1] showed that the con-

dition was necessary, and Tollmien [2] showed that under certain con-

ditions, that it was sufficient.

The purpose of this report is to investigate the effects of com-

pressibility on the stability of a free shear layer, whose profiles

have points of inflexion on them. The hope is that the mechanisms

involved in this type of instability will explain the dissimilarites

observed between the stabilities of subsonic and supersonic flows.

As a starting point, we use Michalkes' work [3] that investigates

the stability of the hyperbolic tangent velocity profile in an incom-

pressible flow. We use this profile first to confirm (for our own

comfort) Michalkes' results in the incompressible care, and then as a

vehicle on which to complete the compressible study. The point of using

this profile is that it can be analytically manipulated, allowing a

relatively simple computational code to be used.

Before doing the compressible study proper, we first eliminated the

possibilty of viscosity being a significant factor. This was done by

demonstrating, that, for the incompressible case, viscosity has only a



slight attenuating effect on the type of instability being studied. This

was the case for the range of Reynolds numbers 103 < Re <

2. Governing Equations

The stability equation for a two dimensional inviscid compressible

flow [4] is given by

d (v - c)$" - v'$] = 2(1 + 0.2M 2 )(v _ c) (2.1)

dy g 91)v-c~ 21-l

g = (1 + 0.2M 2) - M2 (v - c)2
0

22
2 M1O v

M 2 2
1 + 0.2Mi(l - v 2 )

2 2

0 1 + 0.2 M2

where v(y) is the imposed velocity profile, MCO is the free stream Mach

number, $(y) is the complex amplitude of the disturbance and a is the

complex wave number of the disturbance. A derivation is sketched in

Appendix 1. Boundary conditions on (2.1) are derived by supposing that

for an unbounded velocity profile, any finite disturbance will vanish at

infinity. Thus, for boundary conditions on (2.1), we have

$(-o) - p(+ o) = 0 (2.2).

Equation (2.1) is derived by assuming a disturbance of the form

A =O(y) ejcI(x - ct)

Thus, the disturbance is fully described when 0 (y), 01 and c are known.

Clearly, equation (2.1) with (2.2) is insufficient to determine all of

these quantities, and so some further restriction is necessary. The

classical viewpoint, [4] is that such disturbances were temporal by

2



nature, which is equivalent to saying that a is real (i.e. spatially

bounded). Thus, for a specified wave number a (2.1) with (2.2) reduces

essentially to a characteristic value problem, with c as the characteristic

value and 4,(y) as the characteristic function. In recent years, however,

the view has formed that the disturbances are spatial in character, in

which case ctc is taken to be a real quantity. In this case if Ot = aR+ ja I

and c = c R + jc1, then atc = real implies a R c I+ C I c R=0 or

I = C R c I/C R (2.3)

Thus, for a specified a R and c I given by (2.3), and (2.1) with (2.2)

again becomes a more or less conventional characteristic value/function

problem in (c, P) respectively.

Both approaches were considered in this study, and the conclusions

concerning the behavior of the instabilities, with varying Mach number,

were the same with both approaches. In the light of this coincidence we

chose to consider the disturbance as temporal, mainly to facilitate com-

parison with published work (Michalke, [3]).

Thus, the mathematical problem as so far defined is as follows: for

a specified range of real ct's, solve the characteristic value problem

defined at (2.1) and (2.2). Repeat the process for a range of M., (free

stream Mach number).

3. Organization of Equations into a More Convenient Form.

The characteristic value problem as defined at (2.1) and (2.2) is not

easily solved, but a solution can be made easier by following the procedare



Michalke used for his incompressible study. Putting M = 0 into (2.1)

gives, after rearrangement

(v - c)(W" - c
2p) v"cp = 0 (3.1a)

with
q(-o) = (+CO) = 0 (3.1b)

This is Rayleighs' stability equation, the subject of Michalkes'

study. He reduced (3.1a) from a second order equation into a first order

equation using the transformation

(y) = exp [JOdy] (3.2)

to obtain from (3.1a) the equation
if

e, + 2- V ) = 0 (3.3)
V - C

To obtain the boundary condition(s) on 0, we use the facts that

v"(--) = v"(+-) = 0 in (3.1a). Thus, at y = + - (3.1a) gives

v,,- = o (3.4)

yielding at y = + -.

0(y) = exp[+ ay] (3.5)

Since we know that as y - -- then 0(y) - 0 then (3.5) gives as y -,

then O(y)- exp[- ay] (assuming a > 0) and likewise, as y 4- then

(y) = exp(+ ay). Comparison of these two solutions with (3.2) yield

that as

y - then e - +a

and as (3.6)

y -+0% then 6 - -a

Applying (6) onto the equation of the compressible case for M.0 > 0

and following similar arguments for boundary conditions we obtain the system

(v - c)[g(el + 02) - ge] a c2g2 (v - c)(1 + 0.2M 2) + V"' g - vg (3.7)

4



with the corresponding boundary conditions

0(-) = aSign(a) 4P_5o) (3.8)

8(+w) = -czSign(a) v/1 + 0.2M2 4-(+)

Here, the function Sign (a) is used to account for the (non-physical)

mathematical possibility of a being negative. See Appendix 2 for details.

Superficially, the system (3.7) and (3.8) is overdetermined, in that

(3.7) is first order, and yet (3.8) consists of two boundary conditions,

to be satisfied by (3.2), but we must keep in mind that c is a parameter

at our disposal, and may be adjusted to ensure the second (boundary)

condition, given the first.

The complex system of (3.7) and (3.8) yields the pair of simultaneous

equations.

dO = -(O2- e) + (AC + BD) O R + (AD - BC)e I + (ARI - BR2 )

dy (A2 + B2 ) (A2 + B2 )

(3.9)

dO (BC - AD) 0R + (BD + AC)0 I  (BR1 + AR2 )
d= -20R0 + R+

dy R (A2 + B2) (A2 + B2)

where

a0 R + JOI
C C cR + jc I

g - gR + jgl

A = gR(v - CR) + g C1  (3.10)

B = -gI(v - CR) + gRcI

C g'R (V - CR) + gfi I

5
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D 1g'(v - cR) + g'RcI

RI = a
2 (l + 0.2M 2)[(g2 - g2)(v - CR) + 2clg g I]

+ vIgR - v'gR (3.10)

R = a2 (l + 0.2M 2 )[-cl(g2 -g2) + 2g gl(v - CR)]

+ v"g I - v gI '

with the boundary conditions as y -

e = +ax Sign(a)(g2 + g2) Cos e/2

1 = +a Sign(a)(g 2 + g) Sin ;/2

R g In /

e = Principal (Tan- gl/gR)

and

as y + -0

R  -a Sign(a)(1 + 0.2M2) 2 (g2 + g2) 4 Cos 0/2

I = -a Sign(a)(l + 0M2) (g2 + g2 ) 4 Sin ;/2
002g R 1 (3.10)

0 = Principal (Tan-g 1 /gR).

The derivations are given in Appendix 2. The system (3.9) and (3.10)

is still not in a suitable form to be solved numerically, because the

independent variable y is over the range -00 < y < +-. To eliminate this

problem, we introduce the independent variable transformation

z = 0.5(1 + Tanh (y)). (3.11)

This transforms the range -w < y < +- onto 0 < z < 1. This transformation

has a simple effect on (3.9), viz: if we label the two right hand sides

6
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(3.9) as RHS 1 and RHS 2 respectively, then (3.9) becomes

dO R  1

dz 2z(l - z) (RHSI)

and (3.12)

d8 1

dz 2z(l - z) RHS2)

The boundary conditions remain the same, except that instead ot

being evaluated at y - ± -, they are evaluated at z = 0, 1.

It is clear that any numerical treatment of (3.12) requires care at

the two points z = 0 and z - 1. This treatment is described in Appendix 3.

There is a further point that needs to be clarified. It is indicated

in Appendix 6 that when cI = 0, i.e. at the neutral points, then a is

necessarily real for M < 2.5. In turn, this leads to gl = 0 so that in

2 2 2 2
(3.12), the denominator A + B reduces to g(v - c). Since c = 0.5 and

0 < v < 1, then clearly the region about v - c needs to be carefully

treated. This treatment is given in Appendix 4.

4. Strategy

Before describing in detail how to solve the system (3.9) and

(3.10), it is instructive to consider the objective. We are primarily

interested in the change in behaviour of the instabilities associated

with a given velocity profile as Mach number increases in the range

0 < < 2.5, (the upper limit being decided by considerations to be

discussed later). From [3] it can be seen that for temporal disturbances,

for a given wave number a, the growth of the disturbance is determined
aci

by e . The intensity of a disturbance is experimentally observed to

depend on its wave length A(-2r/a).

7
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It is instructive to plot e I against X for a given, fixed M.

By forming a set of such curves for a discrete set of values {M },

a visual idea may be obtained of the effect of Mach number on instability.

Furthermore, from Appendix 1, we see that the argument of the

derivative in equation (2.1) is directly related, in a fairly simple

fashion to the complex static pressure field driving the disturbance.

Since static pressure measurements may be (indirectly) obtained quite

easily from experiment, it makes sense to plot the pressure fields for

various Mach numbers.

5. Numerical Procedure

For a given a and M, the system (3.9) and (3.10) has the basic form

R = fR (R' e CV Cl, z)

01 = f(6R' 0I9 cR9 c1l z)

R (Z 0) 6 RO (5.1)

ol(Z = 0) = 10

where the pair (CR, cI) has to be such that the following conditions are

true:

eR(z 1 i) = R (specified)

01 (z = 1) = 011 (specified)

The adopted procedure goes as follows: For a given (CR, cI), suppose that

the solution of (5.1) at z = 1 is [6R(CR, Cl, 1), OI(cR, c , i1)]. Define

the functional F - [OR(cR, c, R ]2 + I(cR9 9 I) - I2 (5.3)

8



The original characteristic value problem now reduces to the problem

of minimizing F at (5.3) with respect to cR and cI. Clearly, Fmin 
= 0.0,

and this state occurs when (cR, cI) is such that

R(cR, cl, i) = eR5

i.e., F is minimized when the original characteristic value problem is

solved. Thus, for a given fixed value of the pair (Mm, a) we can generate

the corresponding pair (CR, cI). To generate the trajectory (c, cR, c )

for a fixed M, we advance a to c + AO and then calculate (cR + AcR ,

cI + AcI). The process is repeated until a sufficient range of a is

covered. As explained in the last section, we are interested in a plot

of a against cl, and so essentially, we form a projection of the trajectory

(a, cR9 c I ) onto the (a, cI) plane. In practice, it turns out that cR

varies only very slightly along such a trajectory (0.6% for M = 1),

and so little if any information is lost by this particular representation.

5.1 Difficulties Involved

As with many apparently straight forward problems, hidden difficulties

are often encountered. The present case is no exception. The whole

method hinged upon our knowing for each value of M., just one point on

the trajectory (a, CR9 cI). It transpired that it was very difficult to

locate any point on it. The solution was to adopt the old African adage:

"slowly, slowly catchee monkee...", and to proceed as follows. If the

velocity profile is assumed to be the hyperbolic tangent profile, then

at M 0, it is known (Michalke) that

(a, cR, c) (1, 0.5, 0.0) (5.5)

' ! 9



is a point on the trajectory. It is the neutral point on the trajectory.

We next assume that all trajectories corresponding to M in the range

0 < M< 2.5 have such neutral points, (a, cR, 0). Starting from Mo = 0

and by incrementing by some AMOO, that is suitably small, a trajectory

(Mm, c, cR) may be generated for c, = 0. From this trajectory, we can

pick the neutral point (a, cR, 0) for any of the trajectories M.0 = constant.

Knowledge of this point then allows the generation of the trajectories

(a, cR, cI ) for the given M = constant.

If the velocity profile is not the hyperbolic profile, it is just

assumed that the neutral point for M = 0 lies in the region of

(a, cR, cI) = (1, 0.5, 0) and a search is conducted. Having found that one

point, everything proceeds as described above.

6. Results

The hyperbolic tangent profile is given by

v(y) = 0.5(1 + Tanh (y)). (6.1)

In the range -w < y < -, then 0 < v(y) < +1. At y = 0, there is a point

of inflexion. The curve is sketched in Figure 1.

6.1 Effectiveness of Current Procedure

This profile was chosen because a study on the instabilities in an

incompressible flow, using this profile, has been conducted by Michalke [3].

Thus, in the one case Moo= 0, his results form a ready basis for comparison

with our results, giving us a measure of the effectiveness of the presently

used procedure.

wNote: It transpires that for c_ =
I 0, then an algebraic relation

A(M., CR) - 0 exists. Details are explained in Appendix 4.

10
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Table 1 displays the results of Michalke and those of the present

method for M = 0. It is readily seen that (to within rounding error)

perfect agreement exists. We were thus able to proceed with a certain

degree of confidence in both the method and the code.

6.2 Effect of Viscosity

The next step was to determine the effect of Reynolds number on the

instabilities in the flow [5]. The stability equation for the case of finite

Reynolds numbers, and Mo. = 0 is

(v - c)(¢" - C24) + 1(,"" - 2a 2 4 ' + 14)) - v"4 = 0 (b.2)
aRe

Application of the transformation procedure described in Section 3 yields

the system

A- + A 2 _ 2 = 0

J -(,, _ a20) + (v - c)0 = v1 (6.3)
aRe

¢ = exp(I Ady)

0(--)= 6(4-) = 0

The details of this derivation are given in Appendix 5. The system (23)

was solved using a modified version of that procedure described in Section

5. See Appendix 5. Results are displayed only for the worst case,

3
namely Re = 10 , in Table 2. Column (a) gives the Re case, and column

(b) gives the Re = 103 case. It is plain that, even at this relatively

low Reynolds number, the viscous attenuation of the instabilities is

marginal.

Consequently, it was felt that viscosity could safely be ignored as

a significant mechanism in the type of instabilities currently being

considered.

11
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6.3 Effect of Compressibility

Computations were performed for Mach numbers in the range 0 < MK <72.5.

The upper was forced upon us because at M. = 2.5, the neutral point

trajectory 0c, c R9 0) enters the complex plane, indicating the limit

of the instability under consideration. See Appendix 6.

6.3.1 Behavior of the Neutral Point

Figure 2 displays the behavior of the neutral point (a., c I (ci, 0)

as MmO increases in the range 0 < MmO < 2.5. Table 3 displays the same

results numerically.

In essence, the neutral point appears to move monotonically from 1.0

to 0.0 as Mo. moves from 0.0 to 2.5, indicating a progressive decrease in

the range of unstable wavelengths X(= 27/cc) for disturbances, as M., increases.

This last statement is qualified, because there seems to be an anomolous

behavior present in ai at about Moo = 1.375, not shown graphically, indicat-

ing the possible presence of a singularity in ct. Unfortunately, the

presently used code did not behave very well in the region concerned, and

so we were unable to readily describe the events occurring.

From the gross behavior of the neutral point, two conclusions may be

drawn - the results indicate

(a) Only large wavelengths are unstable (X > 27r6) or only low

frequencies (f < c R/276t) are unstable.

(b) At high Mach numbers, the range of unstable wavelengths is much

less that at low Mach numbers.

These results appear to be consistent with the available experimental

data (6, 7].

12



6.3.2 Behavior of Instabilities Over All Wavelengths

These results are displayed over the Mach number values M = 0.0,

0.5, 1.0 and 2.0. Tables 4a, 4b, 4c, and 4d give the numerical results

for the four respective Mach numbers. Figures 3 gives the graphical

displays. There are three conclusions to be drawn:

(a) There is apparently no high wavelength cut-off to the instability

of disturbances.

(b) The magnitude of amplification decreases as Mach number increases

(c) The wavelength at which maximum amplication occurs increases as

Mach number increases.

6.4 Determination of the Eigen Function

Solution of the characteristic equation produces eigen values for the

complex velocity, c(a, M.) and also the eigen function, O(a, MW).

The function of most interest is the pressure P(y) since comparison

with experimental pressure data may be possible. Referring to equation

A.1.9 in Appendix 1

P - [(v - c)o, - vo] (6.4)

The real and imaginary values of r are shown in Figures 4 and 5 respectively.

For a given M., the 0 plotted is the one whose associated c gives maximum

amplification. For comparison with experiment the pressure may be obtained

as follows:

P' - Real P(y) exp[ja(x - ct)]

The two functions Real (r) and Imaginary (r), (referred to as R(r) and

I() hereafter) are plotted in Figures 4 and 5 respectively.

13
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They are plotted on the z-axis, 0 < z < 1, corresponding to a y-axis plot

-- < y < +-. Now, since as y - ±- , 0'(y) - 0 and (y) - 0, then from

equation (6.4), R(r) - 0 and I(r)- 0 as y - ± -, i.e., as z - 0 or z - 1,

then I(r) - 0 and R(F) + 0. From Figure 5, I(F) is seen to behave correctly.

From Figure 4, for M - 0.0 and 1.0, R(r) also is seen to behave correctly,

but for M = 1.5 and 2.0 R(r) appears to be tending to some other value.

However, at z = 0 and z = 1, then (z) = 0 and by virture of (A./.4),

0(z) = 0 at z = 0, 1. It follows that at z = 0, 1, then R(r) must neces-

sarily also be zero. This implies strange behavior for R(r) when M = 1.5

and M = 2.0, which quite possibly is numerical in origin. It may also be

connected, somehow, to the appearance of instabilities.

7. Summary

The stability of a compressible free shear layer has been investigated

by utilizing the linearized equation resulting from a small perturbation

analysis (Rayleigh equation). This eigen-value problem was solved numerically

for various wave numbers (a) and Mach number for a mean velocity profile of

the form of a hyperbolic tangent. This type of flow (with an inflection

point) was shown to be unstable for low values of wave number and for Mach

numbers below 2.5. These results are believed to be useful for analyzing

aerodynamics instabilities [81 encountered in separated flows (buzz, cavity

resonance, buffet, etc.).

S
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APPENDIX A

DERIVATION OF THE GOVERNING EQUATIONS

An inviscid, compressible unsteady flow is assumed. Let u represent

the streamwise cartesian velocity component, and v the cross flow component.

p, p and T are the static pressure, density and temperature respectively.

The basic equations are: Continuity, two momentum and energy.

D p I-V . V = 0pDt

Du ap

Dv p(A.l.I)Dt ax

P = .k.p

pDt pDt

Dwhere D = substantial derivative

Eliminating the density from the continuity and energy equation

produces the following:

au +U + u+ iap 0

t ax ay p ax

+u42+v + - -+0vIV- + U 2-x + Vv + . Ey (A.1.2)

_R + U 2k + V 2k + Yp Iu IV
at ax y (- x + ay) = 0

Now assume that the flow can be represented as a disturbance from a

steady state shear flow [4, 5] in which

u(y) - streamwise velocity

(A.1.3)
v = 0 = cross flow velocity

p static pressure constant

15



It follows that a - = = 0.

ax ax ;y

Let the time dependent disturbed flow be given by

u = U + U'

V 1(A.1.4)

p= p + p'

With this flow, the equations (A.1.2) give

au' +-au' ,v 1- I+p = 0
at ax ay ~ax

av + - o + I a
.L V'- p = 0 (A.1.5)U- + 'Dx + y

- + ;2 + Y2 + ay) = 0

We now assume periodic disturbances of the form

u' = G(y) exp[jct(x - ct)]

v' =  (y) exp[ja(x - ct)] (A.1.6)

p' = 6(y) exp[jx(x - ct)]

where G, Q and are assumed to be complex. (A.1.6) substituted into

(A.1.5) yields, in turn,

ja(u - c) U + Uy = 
-O jot (A.1.7a)

y P

J(-c)VP (A.1.7b)
P y

ja((u - c) - yp(jCLU3 + Qy) (A.1.7c)

We seek to eliminate p and u from these three equations. From (A.l.7c)

j -u J=(- e) - C) - (A.1.8)
Yp y

In (A.l.7a), (A.1.8) gives

(U- c)[-jO(u - c) -- y + jyt=-
yp y y p

- 0( - c) - - I- (u- c)2P

16
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Use p = plRT, and we get

u- V (u -c)uv__-_v ___ j= - (A. 1.•9)

yRT - (u -c) 2  YP

Now eliminate between (A.l.7b) and (A.1.9) and we get

U -v (u C)'] 
-

yRT (u c) 2 j Y yRT) -

or (A.1.10)

Uv- (u - c)v _ au-c)v^

LyRT (u -c)2 yRT
Y

Now use. 2 -2
1 - 0.2 M u

yRT 2 (A..1i)

0

where M2
2 0_ _M= 2(A.I. 12)

0 1 + 0.2M2

and (A.1.10) becomes

F uy - (u- c)y = - c2( -

2( - 0.2 2 -2 (A.1.13)

O o o U

Putting 2 -2

M2 = L u
mu 2 -2 (A.1.14)

1 + 0.2 Mo (1 -u

yields, after some algebra

L - 1 2- 2 (1 + 0.2M2 )(u - c) (A.1.15)
(1 + 0.2 M2) - M oU - c)

17



A change of notation

U ~V

yields equations (2.1)



APPENDIX B

THE DERIVATION OF BOUNDARY CONDITIONS FOR

THE TRANSFORMED STABILITY EQUATION

The untransformed stability equation for an inviscid, compressible flow

is given by

dy ((v g ) 2(1 + 0.2M2)(v - c)P (A.2.1)

We consider this equation for very large value of IyI < -.

As y -+ _o, then v - 0, M - 0, g - I - M2c 2 and (A.2.1) may be approximated
0

by 2 2-C o = 2(1 - M2c 2)(-c)O 
(A.2.2)

0

i.e. by 2 2 2

0

i.e. as y -, then - exp(+ a(l - 2c2 y) (A.2.4)

Since the boundary condition on at - is 1d-0) = 0, then (A.2.4) must be

exp(act(l - M2c 2) 2 y) (A.2.5)

where 2 2a = Sign(Real(x(l - M c2))) (A.2.6)
0

Since by (3.2)

= exp(J0dy) (A.2.7)

Then comparison of (A.2.7) with (A.2.5) yields that a y -o, then

e - C( 3(1 - m2c 2)
0 M2c2) )  (A.2.8)

Sign(Real(a(l - M 02c

Put

o 22
0= Jg (1 - M 2), then,

go (g2 + g) exp(jTanJ 1  /(y (A.2.9)

19



Put 0 - Tan-(g/gR) , then (A.2.8) may be written

^2+ 2,
Saa(gR + gl) exp(jO/2)

a= Sign(a Cos 0/2) 
(A.2.10)

Splitting (A.2.10) into its real and imaginary parts yields the boundary

conditions at

y - o

= 2 20R = &(gR + gI) Cos(0/2)

01 = &(g2 + g21 ) Sin(0/2)

^ ^ (A.2. 11)

= Sign(a Cos(0/2))

o = Tan-i (gl/gR)

2 -1 2 2
As y -* +-00, then v - 1, M - M. and g - gm0 = (1 + 0.2 M - M2 (1 - c)O0

so that for large positive y, (A.2.1) may be approximated by

,,_ 2 g((l + 0.2 M2) 0 (A.2.12)

Following similar arguments to those used to deduce (A.2.11), we arrive

at the boundary condition at

y =4
^ 2 2, 4 ^

eR = - 0(g R + gl) Cos(0/2)

^- a 2 2.
0I = -acg R + gP) Sin(0/2) (A.2.13)

a = Sign(a Cos(0/2))

e = Tan r

A.B.

In evaluating 0 Tan-"(gI/g), care must be taken to ensure that the
correct quadrant is used.

20&
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APPENDIX C

TREATMENT OF STABILITY EQUATION

AT THE END POINTS, z = 0, 1

Equations (3.12) are
* 1

R = 2z(l1 - z) (RHS 1 )
(A.3.1)

6I = 2z(1 - z) (RHS2)

where RHS 1 and RHS2 are given at (3.9).

WRITE
RHSI = -(e2 _ 62) + fR

SI +R (A.3.2)

RHS2 = -20R 6 + fI

then (A.3.1) becomes

R 1 2z(l - z) I 0 R -
0 R)

(A.3.3)* 1

6, = 2z(l1 - z) (-21 R + fI

Use L'Hopitals' rule as z - 0 in (A.3.3):

Lim 0R = 1/2(2e101 - 200R + fR)

(A.3.4)

Lim 0.-2z im 0 5 = 1/2( -20 1 6R - 26 1e R + fI)

Thus, evaluated at z = 0, (A.3.4) gives

(1 + R) 6R - 11 = 1/2 fR )A.3.5)

0 R + (+ + eR) 61 = 1/2 £1

21



FI

Solving (A.3.5) for 0R and @I gives

(1 + eR) 2R + 2I f0(z =0) = 1/2( 2)
1+ e0R) + 0 I  z= 0

(A.3.6)

0 (z = 0) = 1/2( 2 2
1+ R) + 01 z= 0

Following the same arguments at z = 1 gives

0( l)-/ (1 - 0R) [I -0 0I"(z = 1e R) -1/2I f R

R )2 + 2
(1 R 0I z=1

(A.3.7)

0 (z = 1) = -1/2( 2 + 2 R
S(1 -OR) + OI

z= 1

22



APPENDIX D

TREATMENT OF SINGULARITY AT v = cR WHEN c, = 0

In the case of cI = 0, the transformed stability equations reduce to

the single equation

eR = -e2 + g' + g(l + 0.2M2 ) +v (A.b.1)
R R g

since when c is real, then a is real for Mo < 2.5 (see final appendix).

It is clear from A.3b.l that if it is not to contain a singularity,

then as v -w c, then so must v"g - v'g' - 0. From the requirement that

(Vg - v'g') I  0 (A.4b.2)

we can deduce a simple relationship between Moo, and propagation velocity,

CR, of the neutral disturbance. We have
-i

g = (I + 0.2M 2 ) - M 2(v - c)2  (A.4b.3)
0

and
v = 0.5(1 + Tanh(y)) (A.4b.4)

(A.3b.3) gives

g' 0.4MM - 2M 2(v - c)v' (A.4b.5)
(I + 0.2 M 2)

as v - c, then

8, -o - 0.4MM' (A. 4b.6)
(1 + 0.2 M )

From (A.3b.4), with some manipulation

v' = -2v(v - 1) (A.4b.7)

and v" - 4v(v - 1)(2v - 1) (A.4b.8)

Thus, (A.3b.3)through(A.3b.8) in (A.3b.2) give the condition that at v - c,
then, 21 O,4M ,

4v(v - 1)(2v - 1)(1 + 0.2M ) + 2v(v - 2) 2 0 (A.4b.9)

(1 + 0.2M2)
2

23
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2 (2v - 1)(i + 0.2M2) - 0.4MM' = 0 
(A.4b.10)

Now use 2 2 v2
2 M001 + 0.2M2(l - v2) 

(A.4b.11)

and we get, with v - c
2^ 0.1 M2

+ 0.2 M2 c M=(---. )(-4c 2 (c 0.8c-4 ( 2 (A..b.12)2c O18 (c) (A.l)M

where
0. M2 (i - c 2 ) 

(A.4b.13)

Now put a = 0.2 M2 and rearrange, these results

2 (-c + 2c - i) +o(-c2 + 4c - 2) + (2c - 1) 0 (A.4b.14)

This yields
(2c - 1

(c - 1)2

(c - 1)2 
(A.4b.15)

Alternatively, we can rearrange this to give

(1 + 0.2 M,) - (1 + 0. 2)
0.2 M2

(A. 4b. 16)
The implication of this result is significant namely, that for a given
profile v(y), then the propagation velocity of the neutral distrubance is
uniquely defined by the Mach number at infinity.

24



APPENDIX E

MATHEMATICAL AND NUMERICAL TREATMENT OF THE

STABILITY EQUATION FOR INCOMPRESSIBLE, VISCOUS FLOWS

The equation is given by

(v - c)( " - a20 + j/aRe( - 2t 2" + 4t) - v"O = 0 (A.5.1)

Using the D-operator rotation this may be written as

(v - c)(D - a 2) + j/R e(D 2  a )(D2 _ a ) - v"o = 0 (A.5.2)

Put = exp(jAdy) in A.5.2, and we get

(v - c)(A' + A2 
-

2 ) + j/R e(D 2 _ a 2 )( + A2 _ 2 ) _ v" = 0 (A.5.3)

Put A' + A2 - a 2 = 0 (A.5.4)

and the equations are now

2 + A2  2 =

j/R e(6, -U 2 0) + (v - c)O v" (A.5.5)

Using the arguments of Section 3, the boundary conditions of A are

A(--) = +a, A(+-) = -a (A.5.6)

Using these in (A.5.4) gives

e(-') - 0(-$.o) = 0 (A.5.7)

The total system i!-

A' + A2 -a 2 .

J/aR (e"- 0) + (v - c) "

(A.5.8)
4- (,) - 0

where c is such that A(4D) - -

25I _ _ _



The numerical procedure used was essentially that described in

Section 5, except that for each value of c, the differential equation

for e must be solved. Note that as R e-~ -, the differential equation

in 0 becomes an algebraic relationship in Oj and the system reverts to

the inviscid form.
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APPENDIX F

THE UPPER LIMIT ON MACH NUMBER

In this appendix, it is shown that a necessary condition for the

neutral point (a, c I) = (a, 0) to have a real ax is that MOO < 2.5. It

is not shown that it is also sufficient, because the numerical calculations

demonstrate that it is.

The stability equation is given by

d ((v - c)' - v') = a2 (1 + 2M2)(v - 00
g

g (1 + 0.2M2) - M2(v - c)2

0 
(A.6.1)

2 12 2 2 v2112 =MD2v 2/(1 + 0.2M2 (1 - v

142 M 2/(l + 0.2M 2
0

Suppose that for some y then g is such that g(y) < 0 for all

- o< y < y We will show that in this case that a2 is necessarily complex.

It is known that as y -o, then g - constant, -w2 say. Thus, for
* w2

y << y then g - 2 < 0. Likewise, v 0 and v' = 0. Hence, (A.6.1) may

be written as

= -w2a
2

for -< Y << y (A.6.2)

and (- ) = 0

If we insist on non-trivial solutions to (A.6.2), then a must be

complex, otherwise, the equation in (A.6.2) will only admit sinusoidal

27



solutions that cannot satisfy the boundary condition (-)=0.

2
Thus, to obtain a real A , then g must remain positive at least at

its end points. It is shown in Fig j that g is wholly positive for

o < M_ < 2.5, that g(--a) = g(#)= 0 at MC, = 2.5 and that g(-) < 0,

g(+-n) < 0 for M0> 2.5.

Thus, Moo 2.5 represents an upper bound on Mach numbers that allow

real values of c~ at the neutral points.
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APPENDIX G

USEFUL RELATIONSHIPS BETWEEN 0 AND e, FOR COMPUTATIONAL PURPOSES

Equation (3.2) relates 6(y) and 0(y) using (y) = exp[jgdy] (A.7.1)

where

-W < y <

For computational purposes it is necessary to "fix" a bottom limit to the

integral in (A.7.1). Thus more precisely,

y
(y) = exp[ O(s)ds] (A.7.2)

0

Fixing the bottom limit at s - 0 ensures that 0(0) = 1 i.e., $(y) is normal-

ized to unity at the midpoint of the range of y.

From (A.7.2) there follows

y y
OR(y) = exp[ 0R ds] cos[ 01 ds]

0 O (A.7.3)

01 (y) = exp[ eR ds] sin[ e1 ds]
o 0

dOR

dy = OR OR - 0i 1 0

(A.7.4)
dOR

d = 0R I - 01 OR

In the z-plane, (A.7.2) becomes

z s
O(z) = exp[ O(S) ds] (A.7.5)

2s(l - s)
0.5

Relationships corresponding to (A.7.3) follow directly, and hence, values

for 0' and 0' can be found on the z-plane using (A.7.4).

R I
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TABLE 1

Comparison of Michalkes Results With Those of the

Present Method, for Incompressible Inviscid Flow

CI  C (MICHALKE) c (PRESENT METHOD)

0.5000 0.0 0.0

0.3487 0.2000 0.2002

0.2133 0.4446 0.4443

0.1442 0.6000 0.5995

0.0674 0.8000 0.7995

0.0000 1.0000 0.9997
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TABLE 2

Effect of Reynolds Number on Amplification

Of Disturbances for Incompressible Flow

(a) (b)

C I (, Re a~, Re = 10 3

0.5000 0.0 0

0.3487 0.2002 0.2016

0.2133 0.4443 0.4404

0.1442 0.5995 0.5939

0.0674 0.7995 0.7920

0.0000 0.9997 Not computed
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TABLE 3

Behavior of the Neutral Point

(cC RC) I ((X, C R9 0) as Mach Number Increases

0.0 0.9973 0.500

0.2 0.9934 0.501

0.4 0.9747 0.504

0.6 0.9440 0.509

0.8 0.9022 0.515

1.0 0.8502 0.523

1.2 0.7888 0.532

1.4 0.7187 0.541

1.6 0.6396 0.552

1.8 0.5509 0.562

2.0 0.4483 0.573

2.2 0.3194 0.584

2.4 0.0796 0.505

2.5 Not Computed 0.600
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TABLE 4a

Amplication Against Wavelength for Mach Number 0.0

M=O 0.0

exp(oXCI ) X = 27/o

1.0000 6.28

1.0605 8.21

1.0701 9.10

1.0926 10.88

1.0947 11.33

1.0965 11.82

1.0978 12.35

1.0987 12.90

1.0992 13.50

1.0994 14.14

1.0992 14.83

1.0987 15.57

1.0978 16.38

1.0967 17.25

1.0952 18.19

1.0935 19.22

1.0914 20.34

1.0892 21.58

1.0866 22.94
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TABLE 4b

Amplification Against Wavelength for Mach Number 0.5

M 0.5

exp (oC I) X = 2/

1.0000 6.54

1.0164 6.93

1. 0304 7.34

1.0482 8.01

1.0653 8.94

1.0779 10.05

1. 0845 11.00

1.0891 12.15

1.0909 13.01

1.0916 13.63

1.0919* 14.65

1.0916 15.41

1.0911 16.22

1.0901 17.11

1.0889 18.08

1.0873 19.13

1.0855 20.30

1.0833 21.59

1.0809 23.01

1.0783 24.60

1.0753 26.38

1.0722 28.39
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TABLE 4c

Amplification Against Wavelength for Mach Number 1.0

S 1.0

exp(aC I) 10 X

1.0000 7.39

1.0129 7.81

1.0267 8.36

1.0361 8.85

1.0445 9.38

1.0517 9.97

1.0597 10.84

1.0657 11.85

1.0700 13.03

1.0723 14.40

1.0731* 16.03

1.0729 17.96

1.0724 17.98

1.0715 19.12

1.0702 20.37

1.0686 21.77

1.0667 23.34

1.0645 25.12

1.0620 27.14

1.0593 29.46

1.0562 32.15
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TABLE 4d

Amplification Against Wavelength for Mach Number 2.0

M=2.0

exp(oLCI) X = 2n/a

1.0000 13.82

1.0044 14.42

1.0083 15.16

1.0119 15.93

1.0151 16.74

1.0180 17.62

1.0205 18.58

1.0227 19.63

1.0245 20.78

1.0271 23.49

1.0279 25.10

1.0284 26.93

1.0285 29.03
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